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1. Introduction

In recent years, a large number of new examples of AdS5/CFT4 correspondence [1] have

been constructed and studied extensively. IIB string theory on AdS5 × Y preserves N = 2

supersymmetry (8 supercharges) when Y is a Sasaki-Einstein (SE) manifold [2 – 5]. Soon

after the discovery of new SE metrics [6, 7], it was realized that many of the SE manifolds

are toric [8 – 10]. When Y is toric, most geometric quantities such as its volume can be

computed without knowledge of the explicit metric [9]. The toric description also helped

identifying N = 1 superconformal gauge theory duals [11 – 14], the quiver gauge theories.

Using new techniques to analyze quiver gauge theories, very detailed checks have been

made for toric-quiver dual pairs [15]–[25].

One such issue concerns identifying the correct R-symmetry at the conformal fixed

point. The superconformal U(1)R symmetry is in general a nontrivial linear combination

of all nonanomalous global U(1) symmetries. In gauge theory dual, it was found in [26]

that maximizing a-function determines uniquely the correct combination. Denoting the
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global charges as QI , the definition of a as a function of the trial R-charge contains the

triangle ‘t Hooft anomaly, whose coefficient is given by1

CIJK = Tr(QIQJQK). (1.1)

The rule of a-maximiation in N = 1 supersymmetric gauge theory and its geometric dual

have played a crucial role throughout the development [27]–[31]. The conserved currents

JI associated with the charges QI are mapped to U(1) gauge fields AI in supergravity

via AdS/CFT correspondence. Then the anomaly coefficient CIJK is encoded [32] as the

coefficient of the Chern-Simons term in the five-dimensional gauged supergravity action

SCS ∼

∫

CIJK AI ∧ F J ∧ FK . (1.2)

The anomaly coefficients CIJK is also suggested intimately related to the coefficients τIJ

of the two-point correlators among conserved currents via τRR minimization [33].

While the gauge theory expression for CIJK (1.1) is now available from [12, 28], the

supergravity expression in terms of geometric data on SE manifold has been lacking so far

(see, however, the paragraphs below). On the contrary, the expression for τIJ is known in

supergravity [30] but not in the gauge theory. To make a connection between CIJK and

τIJ as suggested in [33], one thus needs a more geometric understanding of CIJK . In fact,

from the supergravity viewpoint, the connection ought to exist since τIJ and CIJK are

both derivable from an underlying prepotential F [34].

In this work, we report progress in comparing global charges and anomalies from gauge

theory and those from supergravity. In particular, we identify the flavor charges in gauge

theory unambiguously and use the identification to compare the expression for triangle ’t

Hooft anomalies in supergravity and gauge theory.

Our work begins in section 2 with a simple observation that the gauge theory result

for the triangle ‘t Hooft anomaly coefficients as derived in [12, 28] is nothing but the area

of a triangle connecting three vertices on the toric diagram:

CIJK =
1

2
|〈vI , vJ , vK〉|. (1.3)

After deriving this formula, we illustrate its use by re-deriving the equivalence [28] of a-

maximization and its geometric counterpart, Z-minimization [9]. Although our proof is

similar to the original one [28], the use of (1.3) reduces the amount of needed computation

considerably. We also resolve the ambiguity in defining the non-R ‘flavor’ charges in the

gauge theory so as to facilitate the comparison with supergravity results.

Clearly, the next logical step is to compute CIJK in supergravity by performing per-

turbative Kaluza-Klein (KK) reduction up to cubic order. While we were making progress

in that direction, ref. [40] appeared, in which a supergravity formula for CIJK valid for

any (not necessarily toric or Sasakian) Einstein manifold, as well as the gauge theory

1Throughout this paper, we work in the usual large N limit and suppress the dependence on N . It can

be easily reinstated so that a is proportional to N
2, F

I
i is proportional to N , etc.
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result (1.3), were obtained. Section 3 of our paper is organized accordingly. After re-

viewing the linearized approximation to KK reduction and fixing the normalization of the

charges, we show that the flavor charges computed in field theory in section 2 agrees per-

fectly with the supergravity result [30]. Finally, we make an explicit check of the relation

τIJ = −3CRIJ [33] using the result from [30, 40] and again find perfect agreement.

2. Toric quiver gauge theory side

It is by now well-known that the global U(1) symmetries of a gauge theory with an SE dual

are divided into two kinds. One is called baryon symmetry, and corresponds to D3-branes

wrapping calibrated three-cycles of the SE manifold Y . The other is often called flavor

symmetry and is associated with the isometry of Y . How the gauge fields for each U(1)

symmetry arise in the AdS5 gauged supergravity will be reviewed in section 3.

In the toric case, Y has three isometries by definition, and the number of independent

three-cycles are given by the toric data. Both symmetries are most efficiently described in

the language of toric geometry, not only on the supergravity side but also in the quiver

gauge theory. So, we shall begin with a quick review of well-known facts about the toric

geometry of Y , mainly to establish our notations and summarize some results pertinent

to discussion in later sections. See [8, 9] for more information on toric geometry in this

context.

2.1 A short review of toric SE manifolds

It is useful to define the SE manifold Y in terms of the cone X = C(Y ) with the metric

ds2
X = dr2 + r2ds2

Y . (2.1)

The manifold Y being Sasakian is equivalent to the cone X being Kähler. The Reeb Killing

vector field defined as

KR = I

(

r
∂

∂r

)

, (2.2)

where I denotes the complex structure on X, is translated to the R-symmetry of the field

theory dual. The manifold Y is Sasaki-Einstein if X is Kähler and Ricci-flat, i.e., Calabi-

Yau (CY). It is known that when Y is SE, it can be locally described as the U(1)R fibration

over a Kähler-Einstein base B. The following relations will be useful when we prove some

identities in section 3:2

ds2
X = dr2 + r2((e0)2 + ds2

B), e0 ≡
1

3
dψ + σ, KR = 3

∂

∂ψ
,

JX = r2JB + rdr ∧ e0, ΩX = eiψr2ΩB ∧ (dr + ire0), (2.3)

R(B)
µν = 6g(B)

µν , dσ = 2JB , dΩB = 3iσ ∧ ΩB.

2Generically, B is an orbifold rather than a smooth manifold. Some of the proofs in section 3 involve

integration by parts over B, hence they are not strictly valid. But, we expect that similar proofs will work

with mild modifications.
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In physics terminology, a toric cone X is conveniently described by the gauged linear

sigma model (GLSM). For X, the GLSM takes a D-term Kähler quotient of {ZI} ∈ C
d

with respect to integer charges QI
a:

d
∑

I=1

QI
a|Z

I |2 = 0, ZI ∼ eiQI
aθa

ZI (a = 1, · · · , d − 3), (2.4)

leaving a three-dimensional complex cone. The CY condition sets
∑

I QI
a = 0 for each a.

Let {vi} (i = 1, 2, 3) be a basis of the kernel of the map Qa : Z
d → Z

d−3, i.e.,

QI
av

i
I = 0. One can regard vi

I as d lattice vectors in Z
3 and use them to parameterize

|ZI |2 = vI · y ≡ vi
Iyi (y ∈ R

3). The allowed values of y form a polyhedral cone ∆ defined

by {vI · y ≥ 0} in R
3. The cone X is then a fibration of three angles {φi} over the base

∆. Using the CY condition
∑

I QI
a = 0, one can set v1

I = 1 for all I, as this assignment

satisfies QI
av

1
I = 0 automatically. We will always set v1

I = 1. The polygon drawn on R
2

with the remaining components of vI ’s is usually called the toric diagram.

By definition, a toric Y has three isometries Ki = ∂/∂φi. The Reeb vector KR is in

general a linear combination of them, KR = biKi. In [9], it was shown that the Reeb vector

characterizes all the essential geometric properties of Y . The manifold Y is embedded in

X as Y = X∩{b ·y = 1/2}. Supersymmetric cycles of Y are given by ΣI = Y ∩{vI ·y = 0}.

The Reeb vector also determines a unique Sasakian metric on Y . The volume of Y is

computable by summing over the volume of the supersymmetric cycles [9]:

Vol(Y ) =
π3

b1

∑

I

〈vI−1, vI , vI+1〉

〈b, vI−1, vI〉〈b, vI , vI+1〉
. (2.5)

Here, 〈u, v,w〉 denotes the determinant of the (3 × 3) matrix made out of vectors u, v,w.

The CY condition on X fixes b1 = 3. The metric of Y becomes Einstein at the minimum

of Vol(Y ) as b2, b3 are varied inside the polyhedral cone: b ∈ ∆.

As explained in [13], when Y is simply-connected, which we assume for the rest of this

paper, the homology group of Y is given by H3(Y, Z) = Z
d−3. If {Ca} (a = 1, · · · , d − 3)

form a basis of three-cycles of Y , it can be shown that ΣI = QI
aC

a, where QI
a is precisely

the GLSM data (2.4) of Y . The harmonic three-forms ωa dual to Ca measure the baryon

charges of ΣI , so

Ba

[

ΣI
]

=

∫

ΣI

ωa = QI
a. (2.6)

As one can see from the torus action in the GLSM description (2.4), the baryon charges

QI
a and the flavor charges F I

i together span Z
d (for simply connected Y ). This means that

the toric relation QI
av

i
I = 0 can be extended to

(

Qa
I

Fi
I

)

( uI
b vI

j ) =

(

δb
a 0

0 δj
i

)

, (2.7)

for some integer-valued matrices F I
i and ub

I . One may want to interpret F I
i as the i-th

flavor charges of ΣI , i.e., Fi

[

ΣI
]

= F I
i . However, even after choosing a fixed basis for vi

I ,
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Figure 1: Triangle anomaly coefficient as the area of a triangle on the toric diagram.

the relation (2.7) does not fix F I
i uniquely, as one may shift F I

i and ub
I by

Fi
I → Fi

I + Ni
aQa

I , uI
b → uI

b − vI
iNi

b. (2.8)

This freedom is called the mixing ambiguity in the literature; flavor symmetry is unique

up to mixing with baryon symmetries. This immediately poses a question: in comparing

the gauge theory results with the supergravity results, how are the flavor charges on both

sides to be identified? Later in this section, we will show that there is a unique, preferred

choice of (non-integer) F I
i which matches with the supergravity result.

2.2 Triangle anomaly from triangle area

We shall now derive a formula for the triangle ’t Hooft anomaly of quiver gauge theories

dual to Y . The formula states that the anomaly coefficient CIJK = Tr(QIQJQK) is simply

the area of the triangle connecting the three vertices vI,J,K on the toric diagram:

CIJK =
1

2
|〈vI , vJ , vK〉|. (2.9)

The derivation of (2.9) is built upon some known features of the quiver gauge theories [28]:

1. The number of gauge group F is twice the area of the toric diagram.

2. Let wI ≡ (vI+1 − vI) denote the edges of the toric diagram. Associated with each

pair of edges (wI , wJ), there are bifundamental chiral superfields Φr
IJ with the same

charges (see below) and multiplicity given by |〈wI , wJ〉| ≡ |w2
Iw

3
J − w3

Iw
2
J |.

See [28] and references therein for more details. The formula (2.9) is then derivable from

the expression for the a-function for the quiver gauge theories.

An explicit expression for the a-function was given in [28]. First, a trial R-charge hI

is assigned to each vertex of the toric diagram subject to the constraint,
∑

I hI = 2. The

vertex vI is associated to a D3-brane wrapped on the calibrated three-cycle ΣI in Y through

– 5 –
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vI · y = 0. Then, the R-charge of ΦIJ is R(ΦIJ) =
∑J

K=I+1 hK or R(ΦIJ) =
∑I

K=J+1 hK

depending on the sign of 〈wI , wJ 〉. The trial a-function is given by [28]

32

9
a = CIJKhIhJhK = F

(

1

2

∑

hI

)3

+
∑

I<J

〈wI , wJ〉

(

J
∑

K=I+1

hK −
1

2

∑

hI

)3

≡ Fx3 +
∑

I<J

〈wI , wJ 〉 (yIJ − x)3 . (2.10)

The first term is the contribution of gaugini while the other terms account for the fermionic

components of Φr
IJ . We replaced 1’s appearing in the formula of [28] by 1

2

∑

I hI using the

constraint
∑

I hI = 2 as we want to express a as a homogeneous cubic function of hI ’s and

read off the anomaly coefficients.

In the simplest case, d = 3, we can check (2.9) explicitly,

32

9
a = F (x3 + (h1 − x)3 + (h2 − x)3 + (h3 − x)3)

= 3Fh1h2h3 = 6 ×
1

2
|〈v1, v2, v3〉|h

1h2h3, (2.11)

where we used 〈w1, w2〉 = 〈w2, w3〉 = 〈w3, w1〉 = |〈v1, v2, v3〉| = F . Now, we proceed by

induction. Assume the relation (2.9) holds for a toric diagram with d vertices, and then

add another vertex vd+1. We distinguish the objects for the new diagram by putting tilde

above them.

32

9
ã = F̃ x̃3 +

d+1
∑

I<J

〈w̃I , w̃J〉 (ỹIJ − x̃)3

= (F + 〈w̃d, w̃d+1〉)

(

x +
1

2
hd+1

)3

+

d−1
∑

I<J

〈wI , wJ 〉

(

yIJ − x −
1

2
hd+1

)3

(2.12)

+

d−1
∑

I=1

〈wI , w̃d〉

(

yId − x −
1

2
hd+1

)3

+

d−1
∑

I=1

〈wI , w̃d+1〉

(

yId − x +
1

2
hd+1

)3

+〈w̃d, w̃d+1〉

(

−x +
1

2
hd+1

)3

.

By collecting terms with (hd+1)n (n = 0, 1, 2, 3), one can show that (2.9) holds for all d+1

vertices. 3 The simplest one turns out to be the (hd+1)0 term. Setting hd+1 = 0, we readily

find

ã|hd+1=0 = a, (2.13)

since the 〈w̃d, w̃d+1〉 terms cancel out and 〈wI , w̃d〉+ 〈wI , w̃d+1〉 = 〈wI , wd〉. In fact, we can

use (2.13) to reverse the direction of the mathematical induction. That is, we can begin

with d > 3 vertices and choose any three for which we want to compute CIJK . Then (2.13)

allows us to remove the rest of the vertices successively until we finally reach d = 3. The

value of CIJK does not depend on the other vertices.

3We thank Eunkyung Koh for carrying out this ‘forward’ proof completely.
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Figure 2: The Reeb vector as a point B inside the polygon [28].

2.3 Applications

To demonstrate the utility of the compact formula (2.9), we shall now apply it to rederive

two known results.

First, let us show that the triangle ‘t Hooft anomaly of baryon symmetries always

vanishes [28]: Tr B3 = CIJKBIBJBK = 0, where BI is an arbitrary linear combination of

the baryon charges only: BI = taQI
a. For example, when d = 4,

1

3
CIJKBIBJBK = 〈B1v1, B

2v2, B
3v3〉 + 〈2, 3, 4〉 + 〈3, 4, 1〉 + 〈4, 1, 2〉

= 〈(1 + 2 + 3 + 4), 2, 3〉 + 〈(1 + 2 + 3 + 4), 4, 1〉

= 0. (2.14)

In the last step, we used the toric relation
∑

I QI
av

i
I = 0. Similarly, for arbitrary d, vanishing

of Tr B3 follows from
∑

I BI(BJBK〈vI , vJ , vK〉) = 0 (no sum over J,K). We relegate the

general proof to appendix A.

Second, let us show the equivalence of a-maximization in a quiver gauge theory and

Z-minimization of the dual toric SE manifold proposed in [9] and proven in [28]. Follow-

ing [28], we parameterize the Reeb vector by (b1, b2, b3) = 3(1, x2, x3) and define

rI = (x2, x3) − (v2
I , v

3
I ), AI = 〈rI , wI〉, (2.15)

LI(x2, x3) =
〈wI−1, wI〉

AI−1AI
, S =

∑

I

LI . (2.16)

Then the results of [9] can be translated to the following forms of trial R-charges and

a-function:

hI
MSY ≡

2LI

S
and aMSY =

9

32

(

24

S

)

. (2.17)

– 7 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
8

In [28], it was shown that maximization of aCFT with respect to trial R charges is equivalent

to maximization of aMSY with respect to the Reeb vector components (x2, x3). The first

step of the proof asserts that the baryon charges decouple from the maximization process:

Tr BR2|hI=hI
MSY

= 0 ⇐⇒ CIJKBILJLK = 0. (2.18)

Then it remains to prove that the maximization process yields the same result. In fact,

aCFT and aMSY are shown to be equal even before maximization:

aCFT |hI=hI
MSY

= aMSY ⇐⇒ CIJKLILJLK = 3S2. (2.19)

A complete proof of these two steps were presented in the (rather long) appendix of [28].

Here we note that (2.9) offers a shorter and perhaps more intuitive proof. As we prove

in the appendix, both of the above statements follow from a single lemma:

cI ≡ CIJKLJLK = 3S + 〈rI , u〉, (2.20)

where u is some vector independent of the label I. If the lemma is true, (2.18) follows from
∑

I QI
a = 0 =

∑

I QI
avI and (2.19) from

∑

I LIrI = 0. The proof of the lemma is quite

straightforward if we combine (2.9) with the original reasoning of [28]. See appendix B.

2.4 More on the flavor charges and decoupling

In gauge theory, we maximize the a-function

a =
9

32
CIJKhIhJhK , (2.21)

subject to the constraint
∑

hI = 2. As the R-charge is a linear combination of baryon and

flavor charges, we can write

hI = taQI
a + siF I

i . (2.22)

In this new basis, the constraint means s1 = 2, as one can see from the extended toric

relation (2.7) and v1
I = 1. In fact, si are related to the Reeb vector simply as si = (2/3)bi.

At this stage, as discussed in section 2.1, F I
i is ambiguous. The values of ta at the maximum

of the a-function depend on the choice of F I
i , while the values of si and the a-function do

not.

As discussed less explicitly in [28], we can perform the maximization process in two

steps.

ā(s, t) ≡
1

3
CIJKhIhJhK = Ciabs

itatb + Cijas
isjta +

1

3
Cijks

isjsk (2.23)

≡ mab(s)t
atb + 2na(s)t

a +
1

3
Cijks

isjsk. (2.24)

This is a quadratic function of ta, so maximization with respect to ta is done trivially to

give t̄a(s) = −mab(s)nb(s). Inserting it back to (2.22),

h̄I(s) = −QI
am

ab(s)nb(s) + F I
i si, (2.25)

ā(s) = −mab(s)na(s)nb(s) +
1

3
Cijks

isjsk. (2.26)

– 8 –
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The result discussed in the last subsection suggests the following identification:

hI
MSY (x2, x3) = h̄I(s)|s=2(1,x2,x3), aMSY (x2, x3) =

27

32
ā(s)|s=2(1,x2,x3). (2.27)

We checked explicitly that this relation holds in many examples. If proven in general,

(2.27) will establish the equivalence aCFT = aMSY in a somewhat more direct way than

the approach of [28] rederived in section 2.3.

For the rest of this paper, we shall assume that (2.27) holds, and examine its implica-

tions. It is convenient to reinstate the s1-dependence of the quantities we defined earlier.

For example,

L̄I(s) ≡
〈vI−1, vI , vI+1〉

〈s, vI−1, vI〉〈s, vI , vI+1〉
, S̄(s) ≡

1

s1

∑

I

L̄I(s), hI
MSY (s) ≡

L̄I(s)

S̄(s)
. (2.28)

Note that hI(s) satisfies

hI(s)vj
I = sj. (2.29)

For h̄I , this holds due to the toric relation (2.7), while for hI
MSY it has a geometric expla-

nation, which we review in appendix B. Differentiating, we find

∂hI

∂si
vj
I = δj

i . (2.30)

Thus (∂hI/∂si) satisfy the same relation as F I
i in (2.7). We therefore define the ‘canonical’

flavor charge as

F̂ I
i ≡

∂hI

∂si

∣

∣

∣

∣

s=s∗

(i = 1, 2, 3), (2.31)

where s∗ denotes the value of s which maximizes the a-function. We will show in the next

section that this is precisely the flavor charge captured by supergravity.

An important feature of the canonical flavor charge is that it makes ĈRia ≡ sj
∗F̂

I
j F̂ J

i ×

QK
a CIJK vanish. Suppose we work in the ‘canonical frame’, that is, we substitute F̂ I

i for

F I
i in (2.22) and proceed. Since hI is a homogeneous function of s of degree 1, we can

always write hI(s) = si ∂hI

∂si . In the canonical frame, this implies that t̄a(s∗) = 0. Next, by

differentiating (2.25) in the canonical frame, and recalling (2.31),

∂hI

∂si
= QI

a

∂t̄a

∂si
+ F̂ I

i =⇒
∂t̄a

∂s

∣

∣

∣

∣

s∗

= 0. (2.32)

Now, combining t̄a(s∗) = 0 = ∂t̄a

∂si |s∗ with t̄a(s) = −mab(s)nb(s), we find that

∂na

∂si

∣

∣

∣

∣

s∗

= Caij sj
∗ = CRai = 0. (2.33)

This demonstrates the decoupling property among the global charges.

– 9 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
8

3. Comparison with Supergravity

In this section we compare our main results from the previous section with the supergravity

computation. First, we work out the KK reduction at the linearized level. It was already

done in [30] where a covariant action in ten dimensions was assumed. To avoid the usual

difficulty with the self-dual five form of IIB supergravity, we follow the common path [36, 37]

of using only the equations of motion.

Second, we compare the flavor charges between field theory and supergravity. The

agreement is perfect. We emphasize that both field theory and supergravity pick out a

unique value of flavor charge and the mixing ambiguity is resolved.

Finally, we would like to compare CIJK of field theory (2.9) with supergravity by

extending the KK reduction to the cubic order. This has been carried out in a very recent

paper [40]. In the last subsection of this paper, we check the relation τIJ = −3CRIJ [33]

using the results of [30, 40] and find complete agreement.

3.1 Massless vectors from linearized equations

We shall follow the conventions of [37]. The IIB supergravity equations of motion relevant

to our analysis are

Rmn =
4

4!
Fmi1i2i3i4Fn

i1i2i3i4 , F = ∗F, dF = 0. (3.1)

In units in which the ‘radius’ l = (4π4gsN/Vol(Y ))1/4ls is set to be unity, the background

solution with N units of F -flux is

ds2 = ds2
AdS + ds2

Y and F = volAdS + volY . (3.2)

The metric is normalized such that Rµν = −4gµν for AdS5 and Rαβ = +4gαβ for Y .

We shall now perturb around the background solution and obtain equations of motion for

massless vector gauge fields up to linear order.

The gauge fields for baryon symmetries arise from fluctuations of the RR five-form

field strength,

δF = F a ∧ ωa − ∗F a ∧ ∗ωa, (3.3)

around the background (3.2). The second term ensures that the self-duality constraint

F = ∗F is satisfied. Here, the Hodge duals are factorized to AdS5 and Y , respectively. At

the linearized level, no other perturbation is needed.

The gauge fields for flavor symmetries arise from fluctuations along the isometries. We

take the following ansatz for the fluctuations:

ds2 = ds2
AdS + gαβ(dyα + Kα

i Ai)(dyβ + Kβ
j Aj), (3.4)

F = volAdS + volY + dC, C =
1

8
(Bi ∧ ∗dKi + ∗dBi ∧ Ki). (3.5)

The metric part of the ansatz is the standard one in KK reduction. The vector Bi from

the RR five-form field-strength must be turned on also because Ai and Bi mix already
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at linearized order [36]. As the ansatz for F is written in terms of the potential C, the

Bianchi identity holds automatically. Again, the Hodge duals are factorized to AdS5 and

Y , respectively.

The mixed components of the Einstein equation and the self-duality equation give,

respectively,

(¤ − 8)Ai = (¤ + 8)Bi and (¤ − 8)Bi = 8Ai, (3.6)

where we defined ¤ ≡ (∗d ∗ d)AdS . We also used the fact that d ∗Ki = 0, d ∗ dKi = 8 ∗ Ki

on Y , which follows from the Killing equation ∇αKβ + ∇βKα = 0 and Rαβ = 4gαβ . We

can easily diagonalize the two equations to obtain the mass eigenstates:

¤(Ai + Bi) = 24(Ai + Bi), ¤(Ai − 2Bi) = 0. (3.7)

To keep the massless fields only, we set Bi = −Ai.

Now, we can read off the gauge kinetic term of the massless gauge fields from the AdS5

components of the field equations (3.1). They yield via AdS/CFT the coefficients τIJ of

the two-point correlators for conserved global currents JI in gauge theory. The result is

to be compared with [30]. A precise comparison, however, requires normalization of the

gauge fields, which is related to the normalization of the charges on the gauge theory side.

So, we shall first discuss how to find the correct normalization.

3.2 Charges

As stated in (2.6), a natural normalization for the baryon charges is

Ba

[

ΣI
]

=

∫

ΣI

ωa = QI
a, (3.8)

where {ωa} form an integral basis of H3(Y, R). The KK analysis of the previous subsection

suggests that the flavor charges can be measured with the replacement of ωa by ∗dKi

modulo an arbitrary multiplicative constants. The correct normalization turns out to be

F I
i =

2π

V

∫

ΣI

(∗dKi)/8 (i = 1, 2, 3), (3.9)

where V denotes Vol(Y ). As a first check, note that the R-charge is given by

RI =
2

3
biF I

i =
π

6V

∫

ΣI

∗dKR =
π

3V
Vol(ΣI), (3.10)

in agreement with the well-known result in the literature [35]. Note that we are abusing

the notations a bit and use Ki to denote both the Killing vector and its dual one-form. In

the last step of (3.10), we used the local U(1)R fibration description of the SE manifold Y

(see also (2.3)):

ds2
Y = (e0)2 + ds2

B , e0 ≡
1

3
dψ + σ, KR = 3

∂

∂ψ
, (3.11)

R(B)
µν = 6g(B)

µν , dσ = 2JB , volΣ = e0 ∧ JB . (3.12)
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It is instructive to compare (3.9) with known results. On the supergravity side, generalizing

the analysis for the R-charge in [35], the authors of [30] showed that, for non-R flavor

charges,

F I
i = −

π

V

∫

ΣI

(iKi
σ)volΣ = −

2π

V

∫

ΣI

yi volΣ = −
1

V

∂V

∂vi
I

(i = 2, 3), (3.13)

where in the last expression, the volume V is regarded as a function of the toric data vi
I .

On the other hand, as we reviewed in the last section the field theory result is

F I
i =

1

2

∂

∂xi
hI

MSY (~x) (i = 2, 3). (3.14)

We now show that all three expressions for the flavor charges (3.9), (3.13) and (3.14)

are in fact the same. To see (3.14) is the same as the last expression in (3.13), we note that

hI
MSY =

2LI

S
,

∂V

∂xi

∣

∣

∣

∣

x∗

= 0,
∂S

∂vi
I

= −
∂LI

∂xi
, (3.15)

where x∗ denotes the value of ~x that minimizes S which is proportional to V = Vol(Y ).

The last identity in (3.15) holds for arbitrary values of ~x, as can be checked by explicit

computation.

To see that the first expression in (3.13) is the same as (3.9), it suffices to show the

equality:
∫

ΣI

∗5dKi = −4

∫

ΣI

(iKi
σ)volΣ. (3.16)

This can be proven using (3.11), (3.12). The one-form dual to the flavor Killing vector

Ki = ∂/∂φi (i = 2, 3) can be decomposed into the base B and the local U(1)R fiber:

Ki = K̄i + (iKi
σ)e0 such that dKi = dK̄i + 2(iKi

σ)JB − 2(iKi
JB)e0. (3.17)

Here, the relation LKi
σ ≡ d(iKi

σ) + iKi
(dσ) = 0 was used. Splitting the three-cycle ΣI

into the U(1)R fiber and a 2-cycle BI in the base B,
∫

ΣI

∗5dKi =

∫

e0

∫

BI

∗4dK̄i + 2

∫

ΣI

(iKi
σ)volΣ. (3.18)

The final step of the proof follows from the identity:

dK̄i + ∗4dK̄i = −6(iKi
σ)JB . (3.19)

The left-hand side of (3.19) is manifestly a self-dual (1, 1) form, so it must be proportional

to the Kähler form JB . To see if (3.19) is consistent, take an exterior derivative to (3.19).

We find that d ∗4 dK̄i = 12 ∗4 K̄i from the left-hand side is indeed equal to

−6 d(iKi
σ) ∧ JB = 12(iKi

JB) ∧ JB = 12 ∗4 K̄i

from the right-hand side. This still leaves a room for a term proportional to the Kähler

form JB on the right-hand side of (3.19). To show that such a term does not appear, let
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us now integrate (3.19) over the base B. The left-hand side vanishes by integration parts

and dJ = 0, while
∫

B
(iKi

σ) ∝

∫

Y
(iKi

σ) ∝
∂V

∂bi
= 0, (3.20)

as a result of volume-minimization [9, 30].

3.3 Gauge kinetic coefficient τIJ revisited

With the normalization for the flavor charges fixed, from the KK reduction analysis in

section 3.1, we can compute the gauge field kinetic term coefficient τIJ and compare them

with [30]. To do so in uniform manner along with the flavor charges (3.9), we rescale the

harmonic three-forms by 2π/V relative to (3.8), viz.

2π

V

∫

ΣI

ωa = QI
a. (3.21)

Then, the expressions for τIJ are

τab =
16π3

V 2

∫

Y
ωa ∧ ∗ωb, τai = 0, τij =

3π3

V 2

∫

Y
Ki ∧ ∗Kj . (3.22)

The baryon components τab are precisely the same as in [30]. As for the flavor components,

the coefficient of gravi-photon (R-symmetry) is

τRR =

(

2

3

)2

bibjτij =
3π3

V 2

(

2

3

)2 ∫

Y5

KR ∧ ∗KR =
4π3

3V
=

16

3
a, (3.23)

in agreement with [30]. For the other flavor symmetries, the expression from [30] looks

slightly different:

τij =
12π3

V 2

∫

Y
(iKi

σ)(iKj
σ)volY (i, j = 2, 3). (3.24)

It agrees with (3.22) if and only if

∫

Y5

Ki ∧ ∗Kj = 4

∫

Y
(iKi

σ)(iKj
σ)volY (i, j = 2, 3). (3.25)

This identity was stated in [30] without proof. We note that it can be verified using (3.19),

and other relations we used in section 3.2. See appendix C for details.

3.4 Chern-Simons coupling CIJK

The Chern-Simons coupling CIJK is obtainable in KK reduction by using the ansatz of

subsection 3.1 and computing the fluctuation up to cubic order along the line of [37 –

39]. While this work was in progress, ref. [40] appeared, where the full computation was

performed using a slightly different approach. The difference is that our ansatz manifestly

satisfy dF = 0 but the self-duality equation is non-trivial, while an alternative ansatz was

used in [40], where F is manifestly self-dual but not necessarily closed.
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A central step in [40] was to combine the baryon symmetries and flavor symmetries

together into some three-forms ωI such that

∫

ΣI

ωJ = δI
J . (3.26)

Comparing with our charge normalizations (3.9), (3.21) and the toric relation (2.7), we

find that

ωI =
2π

V
(ua

Iωa + vi
I ∗ dKi/8). (3.27)

We can use it to re-express the result of [40] in a more convenient form:

Cijk =
3π3

8V 2

∫

Y
Ki ∧ dKj ∧ dKk,

Cija =
2π3

V 2

∫

Y
∗(KidKj) ∧ ωa,

Ciab =
8π3

V 2

∫

Y
ωa ∧ iKi

ωb. (3.28)

As a consistency check, we compute the a-function, which is proportional to CRRR, and

obtain the expected result:

a =
9

32
Cijkb

ibjbk

(

2

3

)3

=
π3

32V 2

∫

Y
KR ∧ dKR ∧ dKR

=
π3

32V 2

∫

Y
e0 ∧ (2JB) ∧ (2JB) =

π3

4V
. (3.29)

3.5 τIJ = −3CRIJ relations

Utilizing the supergravity expressions for the gauge kinetic coefficients (3.22) and the

Chern-Simons coefficients (3.28), we can now demonstrate the relation suggested in [33]

between the two-point correlators and the triangle ‘t Hooft anomalies involving conserved

currents in the gauge theory:

τIJ = −3Tr R FI FJ ≡ −3CRIJ . (3.30)

Here, FI include both baryon and non-R flavor charges.

First, τab = −3CRab follows from the fact that, in the local U(1)R fibration description

of Y given in (3.11), (3.12), ωa = e0ηa for some anti-self-dual two-form ηa on B [30]. Next,

τia = 0 implies that CRia must also vanish. It is indeed so because KR = e0, ωa = e0ηa as

mentioned above, and ωa is harmonic. This also agrees with the field theory computation

(2.33). The last relation τij = −3CRij amounts to

∫

KR ∧ dKi ∧ dKj = −4

∫

Ki ∧ ∗Kj . (3.31)

This simply follows from (3.25), as explained in appendix C.
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A. Tr(B3) = 0

We prove that CIJKBIBJBK = 0 for any linear combination of baryon symmetries. The

proof consists of a combination of our formula CIJK = |〈vI , vJ , vK〉|/2, the toric relation

BIvI = 0, and some combinatoric manipulations. More concretely, we show that

0 =
1

2

∑

(J,K)

[

∑

I

〈vI , vJ , vK〉BIBJBK × (d − 2(K − J))

]

=
∑

(J,K)

[

∑

I

(−1)(I,J,K)CIJKBIBJBK × (d − 2(K − J))

]

(A.1)

=
d

6

∑

I,J,K

CIJKBIBJBK .

The notations require some clarification. The (J,K) sum runs over all possible pairs with

0 < K − J ≤ d/2 (mod d). The I sum then runs over all vertices. The first line is a trivial

consequence of BIvI = 0. The second line simply says that CIJK is equal to 〈vI , vJ , vK〉/2

up to a sign depending on whether I lies on the long(+) or short(-) path between J and

K. The weight factor d − 2(K − J) ensures that if we choose some fixed triangle (I, J,K)

and collect all terms proportional to CIJK from the second line, the net coefficient always

turns out to be d, independent of the choice of the triangle.

Let us check the last statement. Let l1, l2, l3 be the number of edges between (I, J),

(J,K) and (K, I) respectively, so that l1 + l2 + l3 = d. Without loss of generality, we may

assume that l1 ≤ l2 ≤ l3. We collect the terms in two separate cases:

1. l3 ≤ d/2: The sign is positive for all three contributions from the second line of (A.1).

The net coefficient is (d − 2l1) + (d − 2l2) + (d − 2l3) = d.

2. l3 > d/2: The sign is negative in one of the three contributions from the second line

of (A.1). The net coefficient is (d − 2l1) + (d − 2l2) − (d − 2(d − l3)) = d.

This completes the proof.

B. Equality of aCFT and aMSY

We prove the lemma (2.20):

cI ≡ CIJKLJLK = 3S + 〈rI , u〉. (B.1)
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Figure 3: The sign assignment in the second line of (A.1).

As explained in section 2.3, this lemma is sufficient to establish the equality between aCFT

and aMSY . The main idea for the proof is the same as in the original one [28], but our

formula CIJK = |〈vI , vJ , vK〉|/2 simplifies the computation involved considerably.

The definition of wI , rI , etc. are the same as in section 2.3. In what follows, we will

need the following identity [28]:

LIrI =
wI−1

AI−1
−

wI

AI
, =⇒

∑

I

LIrI = 0 or
∑

I

LIvI = (1, x2, x3)
∑

I

LI . (B.2)

Geometrically, the last equation follows from integrating the ‘gradient of a constant func-

tion’ over the polyhedral cone ∆ and applying Stokes’ theorem; see (2.91) of [9].

Getting back to the lemma, we write c1 as

c1 =
∑

2→d

〈v1, vJ , vK〉LJLK . (B.3)

Here the notation (2 → d) means that the sum is taken over 2 ≤ J < K ≤ d. In the

following, we will use notations like (2 → 1), which means the range 2 ≤ J < K ≤ d + 1

with vd+1 ≡ v1.

As in [28], we first compute the difference between two adjacent cI ’s. Using the relation

〈vI , vJ , vK〉 = 〈rI , rJ〉 + 〈rJ , rK〉 + 〈rK , rI〉, we find, for example,

c2 − c1 = 〈w1, u1〉, u1 ≡
∑

2→1

(rJ − rK)LJLK − 2S
w1

A1
. (B.4)

The second term in the definition of u1 does not affect the value of c2 − c1. We include it

(and similar terms for all uI) to make all the uI ’s the same (u1 = u2 = · · · = ud ≡ u) :

u2 − u1 = −2
∑

3→1

(r2 − rK)L2LK − 2S

(

w2

A2
−

w1

A1

)

= −2
[

r2L
2(S − L2) + r2(L

2)2
]

− 2S

(

w2

A2
−

w1

A1

)

= 0, (B.5)
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where we used (B.2). This implies that cI−〈rI , u〉 is independent of the index I. Performing

the subtraction and using (B.2) once again, we find

c1 − 〈r1, u〉 = 2S +
∑

2→d

〈rJ , rK〉LJLK ≡ 2S + T. (B.6)

Finally, we show that T = S by mathematical induction. To begin with, we note that for

d = 3,

T = 〈r2, r3〉L
2L3 = A2×

〈w1, w2〉

A1A2
×

〈w2, w3〉

A2A3
=

〈w1, w2〉

A1A2
+
〈w2, w3〉

A2A3
+
〈w3, w1〉

A3A1
= S, (B.7)

where we used the fact that, when d = 3, 〈w1, w2〉 = 〈w2, w3〉 = 〈w3, w1〉 = A1 + A2 + A3.

Now, assume that T = S holds for a toric diagram with d vertices. As we add another

vertex vd+1, most of the terms in S and T remain unchanged. The only differences are

S̃ − S = L̃d + L̃d+1 + L̃1 − (Ld + L1), (B.8)

T̃ − T = 〈rd, r1〉L̃
dL̃1 + 〈rd, rd+1〉L̃

dL̃d+1 + 〈rd+1, r1〉L̃
d+1L̃1 − 〈rd, r1〉L

dL1, (B.9)

where we distinguished the objects for the new diagram by adding tilde above them. Using

the identity again (B.2), we obtain

〈rd, r1〉L
dL1 = Ld + L1 −

〈wd−1, w1〉

Ad−1A1
, (B.10)

〈rd, rd+1〉L̃
dL̃d+1 = L̃d + L̃d+1 −

〈wd−1, w̃d+1〉

Ad−1Ãd+1

, (B.11)

〈rd+1, r1〉L̃
d+1L̃1 = L̃d+1 + L̃1 −

〈w̃d, w1〉

ÃdA1

, (B.12)

〈rd, r1〉L̃
dL̃1 = −L̃d+1 +

〈wd−1, w̃d+1〉

Ad−1Ãd+1

+
〈w̃d, w1〉

ÃdA1

−
〈wd−1, w1〉

Ad−1A1
. (B.13)

Therefore, T = S implies T̃ = S̃. This completes the proof.

C. Some identities

In this appendix, we prove two identities that we needed in section 3 to establish the

relation between τij and Cijk. Recall that the one-form dual to the Killing vector Ki is

decomposed under the local U(1)R fibration description of Y (3.11), (3.12) as

Ki = K̄i + (iKi
σ)e0. (C.1)

The integral appearing in τij splits accordingly:

1

2π

∫

Y
Ki ∧ ∗5Kj =

∫

B
K̄i ∧ ∗4K̄j +

∫

B
(iKi

σ)(iKj
σ)volB ≡ Aij + Bij. (C.2)
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The first identity (3.25) follows from a straightforward computation:

Aij =

∫

B
(iKi

JB) ∧ ∗4(iKj
JB) = −

1

2

∫

B
d(iKi

σ) ∧ ∗4(iKj
JB)

=
1

2

∫

B
(iKi

σ)d ∗4 (iKj
JB) = −

1

2

∫

B
(iKi

σ)d(K̄j ∧ JB) (C.3)

= −
1

2

∫

B
(iKi

σ)

[

1

2
(dK̄j + ∗4dK̄j) +

1

2
(dK̄j − ∗4dK̄j)

]

∧ JB

= 3

∫

B
(iKi

σ)(iKj
σ)

1

2
JB ∧ JB = 3Bij .

We used (3.19) in going from the third to the last line. The second identity (3.31) follows,

since

1

2π

∫

Y
KR ∧ dKi ∧ dKj =

∫

B
(dK̄i + 2(iKi

σ)JB) ∧ (dK̄j + 2(iKj
σ)JB) (C.4)

= −8Aij + 8Bij = −16Bij = −4

[

1

2π

∫

Y5

Ki ∧ ∗5Kj

]

.
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